3.12.52 \(\int \frac {x (a+b \arctan (c x))}{d+e x^2} \, dx\) [1152]

3.12.52.1 Optimal result
3.12.52.2 Mathematica [A] (verified)
3.12.52.3 Rubi [A] (verified)
3.12.52.4 Maple [A] (verified)
3.12.52.5 Fricas [F]
3.12.52.6 Sympy [F]
3.12.52.7 Maxima [F]
3.12.52.8 Giac [F]
3.12.52.9 Mupad [F(-1)]

3.12.52.1 Optimal result

Integrand size = 19, antiderivative size = 311 \[ \int \frac {x (a+b \arctan (c x))}{d+e x^2} \, dx=-\frac {(a+b \arctan (c x)) \log \left (\frac {2}{1-i c x}\right )}{e}+\frac {(a+b \arctan (c x)) \log \left (\frac {2 c \left (\sqrt {-d}-\sqrt {e} x\right )}{\left (c \sqrt {-d}-i \sqrt {e}\right ) (1-i c x)}\right )}{2 e}+\frac {(a+b \arctan (c x)) \log \left (\frac {2 c \left (\sqrt {-d}+\sqrt {e} x\right )}{\left (c \sqrt {-d}+i \sqrt {e}\right ) (1-i c x)}\right )}{2 e}+\frac {i b \operatorname {PolyLog}\left (2,1-\frac {2}{1-i c x}\right )}{2 e}-\frac {i b \operatorname {PolyLog}\left (2,1-\frac {2 c \left (\sqrt {-d}-\sqrt {e} x\right )}{\left (c \sqrt {-d}-i \sqrt {e}\right ) (1-i c x)}\right )}{4 e}-\frac {i b \operatorname {PolyLog}\left (2,1-\frac {2 c \left (\sqrt {-d}+\sqrt {e} x\right )}{\left (c \sqrt {-d}+i \sqrt {e}\right ) (1-i c x)}\right )}{4 e} \]

output
-(a+b*arctan(c*x))*ln(2/(1-I*c*x))/e+1/2*(a+b*arctan(c*x))*ln(2*c*((-d)^(1 
/2)-x*e^(1/2))/(1-I*c*x)/(c*(-d)^(1/2)-I*e^(1/2)))/e+1/2*(a+b*arctan(c*x)) 
*ln(2*c*((-d)^(1/2)+x*e^(1/2))/(1-I*c*x)/(c*(-d)^(1/2)+I*e^(1/2)))/e+1/2*I 
*b*polylog(2,1-2/(1-I*c*x))/e-1/4*I*b*polylog(2,1-2*c*((-d)^(1/2)-x*e^(1/2 
))/(1-I*c*x)/(c*(-d)^(1/2)-I*e^(1/2)))/e-1/4*I*b*polylog(2,1-2*c*((-d)^(1/ 
2)+x*e^(1/2))/(1-I*c*x)/(c*(-d)^(1/2)+I*e^(1/2)))/e
 
3.12.52.2 Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 441, normalized size of antiderivative = 1.42 \[ \int \frac {x (a+b \arctan (c x))}{d+e x^2} \, dx=-\frac {i b \log (1+i c x) \log \left (\frac {c \left (\sqrt {-d}-\sqrt {e} x\right )}{c \sqrt {-d}-i \sqrt {e}}\right )}{4 e}+\frac {i b \log (1-i c x) \log \left (\frac {c \left (\sqrt {-d}-\sqrt {e} x\right )}{c \sqrt {-d}+i \sqrt {e}}\right )}{4 e}+\frac {i b \log (1-i c x) \log \left (\frac {c \left (\sqrt {-d}+\sqrt {e} x\right )}{c \sqrt {-d}-i \sqrt {e}}\right )}{4 e}-\frac {i b \log (1+i c x) \log \left (\frac {c \left (\sqrt {-d}+\sqrt {e} x\right )}{c \sqrt {-d}+i \sqrt {e}}\right )}{4 e}+\frac {a \log \left (d+e x^2\right )}{2 e}+\frac {i b \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} (1-i c x)}{i c \sqrt {-d}-\sqrt {e}}\right )}{4 e}+\frac {i b \operatorname {PolyLog}\left (2,\frac {\sqrt {e} (1-i c x)}{i c \sqrt {-d}+\sqrt {e}}\right )}{4 e}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} (1+i c x)}{i c \sqrt {-d}-\sqrt {e}}\right )}{4 e}-\frac {i b \operatorname {PolyLog}\left (2,\frac {\sqrt {e} (1+i c x)}{i c \sqrt {-d}+\sqrt {e}}\right )}{4 e} \]

input
Integrate[(x*(a + b*ArcTan[c*x]))/(d + e*x^2),x]
 
output
((-1/4*I)*b*Log[1 + I*c*x]*Log[(c*(Sqrt[-d] - Sqrt[e]*x))/(c*Sqrt[-d] - I* 
Sqrt[e])])/e + ((I/4)*b*Log[1 - I*c*x]*Log[(c*(Sqrt[-d] - Sqrt[e]*x))/(c*S 
qrt[-d] + I*Sqrt[e])])/e + ((I/4)*b*Log[1 - I*c*x]*Log[(c*(Sqrt[-d] + Sqrt 
[e]*x))/(c*Sqrt[-d] - I*Sqrt[e])])/e - ((I/4)*b*Log[1 + I*c*x]*Log[(c*(Sqr 
t[-d] + Sqrt[e]*x))/(c*Sqrt[-d] + I*Sqrt[e])])/e + (a*Log[d + e*x^2])/(2*e 
) + ((I/4)*b*PolyLog[2, -((Sqrt[e]*(1 - I*c*x))/(I*c*Sqrt[-d] - Sqrt[e]))] 
)/e + ((I/4)*b*PolyLog[2, (Sqrt[e]*(1 - I*c*x))/(I*c*Sqrt[-d] + Sqrt[e])]) 
/e - ((I/4)*b*PolyLog[2, -((Sqrt[e]*(1 + I*c*x))/(I*c*Sqrt[-d] - Sqrt[e])) 
])/e - ((I/4)*b*PolyLog[2, (Sqrt[e]*(1 + I*c*x))/(I*c*Sqrt[-d] + Sqrt[e])] 
)/e
 
3.12.52.3 Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 311, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {5515, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x (a+b \arctan (c x))}{d+e x^2} \, dx\)

\(\Big \downarrow \) 5515

\(\displaystyle \int \left (\frac {a+b \arctan (c x)}{2 \sqrt {e} \left (\sqrt {-d}+\sqrt {e} x\right )}-\frac {a+b \arctan (c x)}{2 \sqrt {e} \left (\sqrt {-d}-\sqrt {e} x\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {(a+b \arctan (c x)) \log \left (\frac {2 c \left (\sqrt {-d}-\sqrt {e} x\right )}{(1-i c x) \left (c \sqrt {-d}-i \sqrt {e}\right )}\right )}{2 e}+\frac {(a+b \arctan (c x)) \log \left (\frac {2 c \left (\sqrt {-d}+\sqrt {e} x\right )}{(1-i c x) \left (c \sqrt {-d}+i \sqrt {e}\right )}\right )}{2 e}-\frac {\log \left (\frac {2}{1-i c x}\right ) (a+b \arctan (c x))}{e}-\frac {i b \operatorname {PolyLog}\left (2,1-\frac {2 c \left (\sqrt {-d}-\sqrt {e} x\right )}{\left (c \sqrt {-d}-i \sqrt {e}\right ) (1-i c x)}\right )}{4 e}-\frac {i b \operatorname {PolyLog}\left (2,1-\frac {2 c \left (\sqrt {e} x+\sqrt {-d}\right )}{\left (\sqrt {-d} c+i \sqrt {e}\right ) (1-i c x)}\right )}{4 e}+\frac {i b \operatorname {PolyLog}\left (2,1-\frac {2}{1-i c x}\right )}{2 e}\)

input
Int[(x*(a + b*ArcTan[c*x]))/(d + e*x^2),x]
 
output
-(((a + b*ArcTan[c*x])*Log[2/(1 - I*c*x)])/e) + ((a + b*ArcTan[c*x])*Log[( 
2*c*(Sqrt[-d] - Sqrt[e]*x))/((c*Sqrt[-d] - I*Sqrt[e])*(1 - I*c*x))])/(2*e) 
 + ((a + b*ArcTan[c*x])*Log[(2*c*(Sqrt[-d] + Sqrt[e]*x))/((c*Sqrt[-d] + I* 
Sqrt[e])*(1 - I*c*x))])/(2*e) + ((I/2)*b*PolyLog[2, 1 - 2/(1 - I*c*x)])/e 
- ((I/4)*b*PolyLog[2, 1 - (2*c*(Sqrt[-d] - Sqrt[e]*x))/((c*Sqrt[-d] - I*Sq 
rt[e])*(1 - I*c*x))])/e - ((I/4)*b*PolyLog[2, 1 - (2*c*(Sqrt[-d] + Sqrt[e] 
*x))/((c*Sqrt[-d] + I*Sqrt[e])*(1 - I*c*x))])/e
 

3.12.52.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5515
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_ 
.)*(x_)^2)^(q_.), x_Symbol] :> With[{u = ExpandIntegrand[(a + b*ArcTan[c*x] 
)^p, (f*x)^m*(d + e*x^2)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d 
, e, f, m}, x] && IntegerQ[q] && IGtQ[p, 0] && ((EqQ[p, 1] && GtQ[q, 0]) || 
 IntegerQ[m])
 
3.12.52.4 Maple [A] (verified)

Time = 0.27 (sec) , antiderivative size = 394, normalized size of antiderivative = 1.27

method result size
risch \(\frac {i b \ln \left (-i c x +1\right ) \ln \left (\frac {c \sqrt {e d}-\left (-i c x +1\right ) e +e}{c \sqrt {e d}+e}\right )}{4 e}+\frac {i b \ln \left (-i c x +1\right ) \ln \left (\frac {c \sqrt {e d}+\left (-i c x +1\right ) e -e}{c \sqrt {e d}-e}\right )}{4 e}+\frac {i b \operatorname {dilog}\left (\frac {c \sqrt {e d}-\left (-i c x +1\right ) e +e}{c \sqrt {e d}+e}\right )}{4 e}+\frac {i b \operatorname {dilog}\left (\frac {c \sqrt {e d}+\left (-i c x +1\right ) e -e}{c \sqrt {e d}-e}\right )}{4 e}+\frac {a \ln \left (\left (-i c x +1\right )^{2} e -c^{2} d -2 \left (-i c x +1\right ) e +e \right )}{2 e}-\frac {i b \ln \left (i c x +1\right ) \ln \left (\frac {c \sqrt {e d}-\left (i c x +1\right ) e +e}{c \sqrt {e d}+e}\right )}{4 e}-\frac {i b \ln \left (i c x +1\right ) \ln \left (\frac {c \sqrt {e d}+\left (i c x +1\right ) e -e}{c \sqrt {e d}-e}\right )}{4 e}-\frac {i b \operatorname {dilog}\left (\frac {c \sqrt {e d}-\left (i c x +1\right ) e +e}{c \sqrt {e d}+e}\right )}{4 e}-\frac {i b \operatorname {dilog}\left (\frac {c \sqrt {e d}+\left (i c x +1\right ) e -e}{c \sqrt {e d}-e}\right )}{4 e}\) \(394\)
parts \(\frac {a \ln \left (e \,x^{2}+d \right )}{2 e}+\frac {b \left (\frac {\arctan \left (c x \right ) c^{2} \ln \left (e \,c^{2} x^{2}+c^{2} d \right )}{2 e}-\frac {c^{2} \left (-\frac {i \left (\ln \left (c x -i\right ) \ln \left (e \,c^{2} x^{2}+c^{2} d \right )-2 e \left (\frac {\ln \left (c x -i\right ) \left (\ln \left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )-c x +i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )}\right )+\ln \left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )-c x +i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )}\right )\right )}{2 e}+\frac {\operatorname {dilog}\left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )-c x +i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )}\right )+\operatorname {dilog}\left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )-c x +i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )}\right )}{2 e}\right )\right )}{2}+\frac {i \left (\ln \left (c x +i\right ) \ln \left (e \,c^{2} x^{2}+c^{2} d \right )-2 e \left (\frac {\ln \left (c x +i\right ) \left (\ln \left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )-c x -i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )}\right )+\ln \left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )-c x -i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )}\right )\right )}{2 e}+\frac {\operatorname {dilog}\left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )-c x -i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )}\right )+\operatorname {dilog}\left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )-c x -i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )}\right )}{2 e}\right )\right )}{2}\right )}{2 e}\right )}{c^{2}}\) \(614\)
derivativedivides \(\frac {\frac {a \,c^{2} \ln \left (e \,c^{2} x^{2}+c^{2} d \right )}{2 e}+b \,c^{2} \left (\frac {\arctan \left (c x \right ) \ln \left (e \,c^{2} x^{2}+c^{2} d \right )}{2 e}-\frac {-\frac {i \left (\ln \left (c x -i\right ) \ln \left (e \,c^{2} x^{2}+c^{2} d \right )-2 e \left (\frac {\ln \left (c x -i\right ) \left (\ln \left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )-c x +i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )}\right )+\ln \left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )-c x +i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )}\right )\right )}{2 e}+\frac {\operatorname {dilog}\left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )-c x +i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )}\right )+\operatorname {dilog}\left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )-c x +i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )}\right )}{2 e}\right )\right )}{2}+\frac {i \left (\ln \left (c x +i\right ) \ln \left (e \,c^{2} x^{2}+c^{2} d \right )-2 e \left (\frac {\ln \left (c x +i\right ) \left (\ln \left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )-c x -i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )}\right )+\ln \left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )-c x -i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )}\right )\right )}{2 e}+\frac {\operatorname {dilog}\left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )-c x -i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )}\right )+\operatorname {dilog}\left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )-c x -i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )}\right )}{2 e}\right )\right )}{2}}{2 e}\right )}{c^{2}}\) \(622\)
default \(\frac {\frac {a \,c^{2} \ln \left (e \,c^{2} x^{2}+c^{2} d \right )}{2 e}+b \,c^{2} \left (\frac {\arctan \left (c x \right ) \ln \left (e \,c^{2} x^{2}+c^{2} d \right )}{2 e}-\frac {-\frac {i \left (\ln \left (c x -i\right ) \ln \left (e \,c^{2} x^{2}+c^{2} d \right )-2 e \left (\frac {\ln \left (c x -i\right ) \left (\ln \left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )-c x +i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )}\right )+\ln \left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )-c x +i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )}\right )\right )}{2 e}+\frac {\operatorname {dilog}\left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )-c x +i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )}\right )+\operatorname {dilog}\left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )-c x +i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}+2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )}\right )}{2 e}\right )\right )}{2}+\frac {i \left (\ln \left (c x +i\right ) \ln \left (e \,c^{2} x^{2}+c^{2} d \right )-2 e \left (\frac {\ln \left (c x +i\right ) \left (\ln \left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )-c x -i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )}\right )+\ln \left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )-c x -i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )}\right )\right )}{2 e}+\frac {\operatorname {dilog}\left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )-c x -i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =1\right )}\right )+\operatorname {dilog}\left (\frac {\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )-c x -i}{\operatorname {RootOf}\left (e \,\textit {\_Z}^{2}-2 i e \textit {\_Z} +c^{2} d -e , \operatorname {index} =2\right )}\right )}{2 e}\right )\right )}{2}}{2 e}\right )}{c^{2}}\) \(622\)

input
int(x*(a+b*arctan(c*x))/(e*x^2+d),x,method=_RETURNVERBOSE)
 
output
1/4*I*b*ln(1-I*c*x)/e*ln((c*(e*d)^(1/2)-(1-I*c*x)*e+e)/(c*(e*d)^(1/2)+e))+ 
1/4*I*b*ln(1-I*c*x)/e*ln((c*(e*d)^(1/2)+(1-I*c*x)*e-e)/(c*(e*d)^(1/2)-e))+ 
1/4*I*b/e*dilog((c*(e*d)^(1/2)-(1-I*c*x)*e+e)/(c*(e*d)^(1/2)+e))+1/4*I*b/e 
*dilog((c*(e*d)^(1/2)+(1-I*c*x)*e-e)/(c*(e*d)^(1/2)-e))+1/2*a/e*ln((1-I*c* 
x)^2*e-c^2*d-2*(1-I*c*x)*e+e)-1/4*I*b*ln(1+I*c*x)/e*ln((c*(e*d)^(1/2)-(1+I 
*c*x)*e+e)/(c*(e*d)^(1/2)+e))-1/4*I*b*ln(1+I*c*x)/e*ln((c*(e*d)^(1/2)+(1+I 
*c*x)*e-e)/(c*(e*d)^(1/2)-e))-1/4*I*b/e*dilog((c*(e*d)^(1/2)-(1+I*c*x)*e+e 
)/(c*(e*d)^(1/2)+e))-1/4*I*b/e*dilog((c*(e*d)^(1/2)+(1+I*c*x)*e-e)/(c*(e*d 
)^(1/2)-e))
 
3.12.52.5 Fricas [F]

\[ \int \frac {x (a+b \arctan (c x))}{d+e x^2} \, dx=\int { \frac {{\left (b \arctan \left (c x\right ) + a\right )} x}{e x^{2} + d} \,d x } \]

input
integrate(x*(a+b*arctan(c*x))/(e*x^2+d),x, algorithm="fricas")
 
output
integral((b*x*arctan(c*x) + a*x)/(e*x^2 + d), x)
 
3.12.52.6 Sympy [F]

\[ \int \frac {x (a+b \arctan (c x))}{d+e x^2} \, dx=\int \frac {x \left (a + b \operatorname {atan}{\left (c x \right )}\right )}{d + e x^{2}}\, dx \]

input
integrate(x*(a+b*atan(c*x))/(e*x**2+d),x)
 
output
Integral(x*(a + b*atan(c*x))/(d + e*x**2), x)
 
3.12.52.7 Maxima [F]

\[ \int \frac {x (a+b \arctan (c x))}{d+e x^2} \, dx=\int { \frac {{\left (b \arctan \left (c x\right ) + a\right )} x}{e x^{2} + d} \,d x } \]

input
integrate(x*(a+b*arctan(c*x))/(e*x^2+d),x, algorithm="maxima")
 
output
2*b*integrate(1/2*x*arctan(c*x)/(e*x^2 + d), x) + 1/2*a*log(e*x^2 + d)/e
 
3.12.52.8 Giac [F]

\[ \int \frac {x (a+b \arctan (c x))}{d+e x^2} \, dx=\int { \frac {{\left (b \arctan \left (c x\right ) + a\right )} x}{e x^{2} + d} \,d x } \]

input
integrate(x*(a+b*arctan(c*x))/(e*x^2+d),x, algorithm="giac")
 
output
sage0*x
 
3.12.52.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x (a+b \arctan (c x))}{d+e x^2} \, dx=\int \frac {x\,\left (a+b\,\mathrm {atan}\left (c\,x\right )\right )}{e\,x^2+d} \,d x \]

input
int((x*(a + b*atan(c*x)))/(d + e*x^2),x)
 
output
int((x*(a + b*atan(c*x)))/(d + e*x^2), x)